MCC-134, a blocker of mitochondrial and opener of sarcolemmal ATP-sensitive K+ channels, abrogates cardioprotective effects of chronic hypoxia.
نویسندگان
چکیده
We examined the effect of MCC-134, a novel inhibitor of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels and activator of sarcolemmal ATP-sensitive K(+) (sarcK(ATP)) channels, on cardioprotection conferred by adaptation to chronic hypoxia. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 5-6 weeks) and susceptibility of their hearts to ventricular arrhythmias and myocardial infarction was evaluated in anesthetized open-chest animals subjected to 20-min coronary artery occlusion and 3-h reperfusion on the day after the last hypoxic exposure. MCC-134 was administered intravenously 10 min before ischemia and 5 min before reperfusion in a total dose of 0.3 mg/kg or 3 mg/kg divided into two equal boluses. The infarct size (tetrazolium staining) was reduced from 59.2+/-4.4 % of the area at risk in normoxic controls to 43.2+/-3.3 % in the chronically hypoxic group. Chronic hypoxia decreased the reperfusion arrhythmia score from 2.4+/-0.5 in normoxic animals to 0.7+/-0.5. Both doses of MCC-134 completely abolished the antiarrhythmic protection (score 2.4+/-0.7 and 2.5+/-0.5, respectively) but only the high dose blocked the infarct size-limiting effect of chronic hypoxia (54.2+/-3.7 %). MCC-134 had no effect in the normoxic group. These results support the view that the opening of mitoKATP channels but not sarcKATP channels plays a crucial role in the mechanism by which chronic hypoxia improves cardiac tolerance to ischemia/reperfusion injury.
منابع مشابه
MCC-134, a single pharmacophore, opens surface ATP-sensitive potassium channels, blocks mitochondrial ATP-sensitive potassium channels, and suppresses preconditioning.
BACKGROUND MCC-134 (1-[4-(H-imidazol-1-yl)benzoyl]-N-methylcyclobutane-carbothioamide), a newly developed analog of aprikalim, opens surface smooth muscle-type ATP-sensitive potassium (K(ATP)) channels but inhibits pancreatic K(ATP) channels. However, the effects of MCC-134 on cardiac surface K(ATP) channels and mitochondrial K(ATP) (mitoK(ATP)) channels are unknown. A mixed agonist/blocker wit...
متن کاملCardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice.
BACKGROUND We recently demonstrated that the sarcolemmal ATP-sensitive potassium (sarcK(ATP)) channel plays a key role in cardioprotection against ischemia/reperfusion injuries in Kir6.2-knockout (KO) mice. In the present study, we evaluated the effects of diazoxide, a mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener, on ischemia-induced myocardial stunning in sarcK(ATP) channe...
متن کاملPharmacologic profile of the selective mitochondrial-K(ATP) opener BMS-191095 for treatment of acute myocardial ischemia.
ATP-sensitive potassium channel (K(ATP)) openers as a class protect ischemic myocardium. The protective effects are independent of vasodilator activity and effects on action potential shortening, actions typically associated with sarcolemmal K(ATP) activation. BMS-191095 is a novel mitochondrial K(ATP) opener which protects ischemic myocardium while having no electrophysiologic or vasodilator e...
متن کاملSelective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection.
BACKGROUND Pharmacological evidence has implicated ATP-sensitive K(+) (K(ATP)) channels as the effectors of cardioprotection, but the relative roles of mitochondrial (mitoK(ATP)) and sarcolemmal (surfaceK(ATP)) channels remain controversial. METHODS AND RESULTS We examined the effects of the K(ATP) channel blocker HMR1098 and the K(ATP) channel opener P-1075 on surfaceK(ATP) and mitoK(ATP) ch...
متن کاملBepridil, an antiarrhythmic drug, opens mitochondrial KATP channels, blocks sarcolemmal KATP channels, and confers cardioprotection.
Bepridil, which is clinically useful in the treatment of arrhythmias, has been reported to inhibit sarcolemmal ATP-sensitive K(+) (sarcK(ATP)) channels. However, the effect of bepridil on mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels remains unclear. The objective of the present study was to determine whether bepridil activates mitoK(ATP) channels and confers cardioprotection. SarcK(AT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological research
دوره 54 4 شماره
صفحات -
تاریخ انتشار 2005